#### **Particle Size Measurement**



Ashfaq M Ansery Lecturer ChE Department, BUET



# Sieving





Each screen has smaller openings than the one above, usually in 2<sup>1/n</sup> series

$$\frac{D_1}{D_2} = \frac{D_2}{D_3} = \frac{D_3}{D_4} = \dots = \frac{D_{n-1}}{D_n} = \dots = constant$$

 $constant = 2^{1/4}$  (e.g. 0.0015,0.0017,0.0021 inch)

2<sup>1/2</sup> (e.g. 0.0015, 0.0021 inch)

#### **Table: Tyler Standard Screen Sizes**

| Aperture (in)<br>(2 <sup>1/2</sup> )×10 <sup>4</sup> | Aperture (in)<br>(2 <sup>1/4</sup> )×10 <sup>4</sup> | Mesh<br>Number | Wire Diameter<br>(in) |
|------------------------------------------------------|------------------------------------------------------|----------------|-----------------------|
|                                                      | 35                                                   | 170            | 0.0024                |
| 29                                                   | 29                                                   | 200            | 0.0021                |
|                                                      | 24                                                   | 230            | 0.0016                |
| 21                                                   | 21                                                   | 270            | 0.0016                |
|                                                      | 17                                                   | 325            | 0.0014                |
| 15                                                   | 15                                                   | 400            | 0.0010                |

The sample is placed on top of a series of screens with a lid above

# The stack of screens clamped into a shaker

# Shaking is continued for a fixed time

As the sieves are shaken, the particles fall through them until a screen is reached in which the openings are too small for the particle to pass

- □ The sieves are removed
- □ The material held on each of the sieves is collected and weighed

# **Sieving Efficiency**

# $Efficiency = \frac{\text{percentage material actual passing}}{\text{percentage meterial capable of passing}}$

#### **Factors Affecting the Efficiency**

- Rate of feeding
- Particle size
- Moisture
- □ Worn or damaged screens
- Blinding (clogging) of screens
- Electrostatic charge

# Screening terminology

#### Mesh

number of openings per linear inch.

For example

- 14 mesh will have 14 openings per inch
- 12 mesh will have 12 openings per inch

The higher the mesh number the smaller a particle has to be to pass through the column

# Screening terminology

Undersize
Oversize
e.g. (-10+14) Tyler Mesh

# Screen aperture e.g. 0.0015 in, 0.0017 in, 0.0021 in Screen interval

e.g.  $2^{1/2}$ ,  $2^{1/4}$ 

# Screening terminology

#### Diameter of a sieve fraction

e.g.

| Size Range (Tyler Mesh) | Diameter (in) |  |
|-------------------------|---------------|--|
| -10+14                  | 0.0555        |  |

#### Methods of Graphic Presentation of Data

- Histogram
- Fractional Distribution
- Cumulative Distribution

# **Typical Screen Analysis Data**

| Size Range | Mass Fraction Retained, wt% |  |
|------------|-----------------------------|--|
| -10+14     | 2                           |  |
| -14+20     | 5                           |  |
| -20+28     | 10                          |  |
| -28+35     | 18                          |  |
| -35+48     | 25                          |  |
| -48+65     | 25                          |  |
| -65        | 15                          |  |

# **Calculated Data**

| Size Range     | Avg Particle<br>Dia, in | Mass<br>Fraction |
|----------------|-------------------------|------------------|
| -0.065+0.046   | 0.0555                  | 0.02             |
| -0.046+0.0328  | 0.0394                  | 0.05             |
| -0.0328+0.0232 | 0.0280                  | 0.1              |
| -0.0232+0.0164 | 0.0198                  | 0.18             |
| -0.0164+0.0116 | 0.0140                  | 0.25             |
| -0.0116+0.0082 | 0.0099                  | 0.25             |
| -0.0082        |                         | 0.15             |

#### Histogram



# Histogram

- □ A bar graph
- Good pictorial method
- Shape greatly effected by sieve interval
- Grain size parameters (skewness, kurtosis) cannot be computed from histogram

#### **Fractional Distribution**



# **Fractional Distribution**

- □ A "smoothed-out" histogram
- Good pictorial method
- Independent of sieve interval
- □ Grain size parameters cannot be computed from this curve

#### Semi logarithmic Coordinate



| Avg<br>Particle  | Mass<br>Fraction | Cumulative MF<br>smaller than | Cumulative MF<br>larger than size |
|------------------|------------------|-------------------------------|-----------------------------------|
| Dia, in          | X <sub>i</sub>   | size noted                    | noted                             |
|                  |                  | 1                             | 0                                 |
| 0.0555           | 0.02             | 0.98                          | 0.02                              |
| 0.0394           | 0.05             | 0.93                          | 0.07                              |
| 0.0280           | 0.1              | 0.83                          | 0.17                              |
| 0.0198           | 0.18             | 0.65                          | 0.35                              |
| 0.0140           | 0.25             | 0.4                           | 0.6                               |
| 0.0099           | 0.25             | 0.15                          | 0.85                              |
| 23 January, 2008 | 0.15             | Particle Technology           | <b>1</b> <sup>20</sup>            |





- More difficult than histogram or frequency curve to interpret at a glance
- Independent of sieve interval
- □ Grain size parameters can be computed from this curve

# Summary of the Lecture

- □ Sieving
- Different screening terminology
  - Undersize & Oversize
  - Screen aperture & Wire mesh etc.
- □ Graphic presentation of data
  - Histogram
  - Frequency curve
  - Cumulative distribution curve

#### Reference

#### Foust *et al*: Principles of Unit Operations, second edition, John Wiley & Sons, Page#699-703