
Introduction to Particle Technology

Ashfaq M Ansery
Lecturer, ChE Department, BUET

What is a Particle?

What is a Particle?

a minute part of matter

www.sd5.k12.mt.us/glaciereft/geogloss.htm

□ a very small speck of solid matter

www.rwater.com/glossary/gloss_mz.htm

Unit of matter of indeterminate dimensions and volume

www.unistates.com/rmt/explained/glossary/rmtglossarypg.html

What is Particle Technology?

☐ Techniques for processing and handling particulate solids

Why?

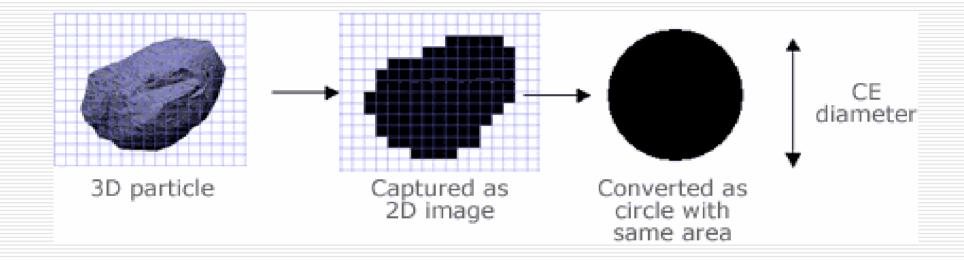
Most chemical engineers will find themselves working with particles at some point in their professional life

Where?

- Chemical engineers meet particulate solids in carrying out many unit operations
 - Crushing
 - Drying
 - Filtering
 - Crystallization
 - Solid fluid reacting
 - Dust collecting etc

Goals

- Characterize particles and particulate systems
- Identify and design important traditional unit operations


AND

☐ You will know where to turn to look for more information

Characterization of Solid Particles

Individual solid particles are characterized by their size, shape, and density

Particle Size

Particle Size

- Diameter of a sphere which has the same property as the particle itself -- that is, the same volume, same settling velocity, etc
- Diameter of a circle which has the same property as the projected outline of the particle -- that is, the same projected area or same perimeter
- Linear dimension measured parallel to a particular direction

Unit

- Coarse particles: inches or millimeters
- ☐ Fine particles: screen size
- Very fine particles: micrometers or nanometers
- Ultra fine particles: surface area per unit mass, m²/g

Particle-size Measurement

- Sedimentation
- Microscopy
- Sieving

Laboratory Method for PSM

Method	Approximate Size	Type of Size Distribution
	(µm)	
Gravity Sedimentation	2-100	By mass
Microscopy >Optical >Electron	0.8-150 0.001-5	By number
Sieving	37-4000	By mass

Sedimentation

Assumptions:

- The suspension is sufficiently dilute for the particles to settle as individuals
- ☐ Motion of the particles in the liquid obeys Stokes' law $(Re_p < 0.3, C_D = 24/Re_p)$
- □ Particles are assumed to accelerate rapidly to their terminal free fall velocity U_T so that the time for acceleration is negligible

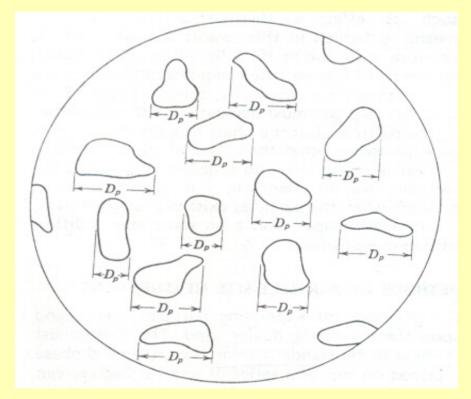
Sedimentation (cont..)

Figure: Size Analysis by Sedimentation

Sedimentation (cont..)

Terminal Settling Velocity

(from Stokes' law)


$$U_T = \frac{d^2(\rho_p - \rho_f)g}{18\mu}$$

Microscopy

- A sample of the material is put under a microscope
- each particle within the field of vision is measured by an optical micrometer
- For irregularly shaped particles
- Choose a direction of measurement and take the longest distance across the particle in this direction

Microscopy (cont..)

Figure: PSM with a Micrometer

Microscopy (cont..)

Advantages:

- The answers obtained are not dependent upon the perfection of a screen
- Agglomeration of particles can be easily detected

Disadvantage:

Time consuming and extremely laborious

Summary of the Lecture

- What is Particle?
- What is Particle Technology?
- Why are we (chemical engineers) interested in this subject?
- What is the goal of this course?
- What do you mean by Particle size?
- ☐ How can we measure it?
 - Sedimentation
 - Microscopy

Reference

- Foust et al: Principles of Unit
 Operations, second edition, John Wiley
 & Sons
- Rhodes Martin.: Introduction to Particle Technology, John Wiley & Sons, 2004, Page#66-68