Mixed Suspension Mixed Product Removal Crystallization (MSMPR) cont.....

Ashfaq M Ansery Lecturer, ChE Deptt BUET

Kinetic Coefficients

Relation between nucleation rate B° with the zero size particle density n°

B°=Gn°

Number of Crystals per unit mass

The number of crystals n_c in a unit volume of liquid (magma or product)

$$n_{c} = \int_{0}^{\infty} n dL = n^{0} \tau G$$

The total mass of product crystals in a unit volume of liquid

$$m_{c} = \int_{0}^{\infty} mndL = 6a\rho_{c}n^{0}(G\tau)^{4}$$

Number of Crystals per unit mass

Number of Crystals per unit mass is

$$\frac{n_c}{m_c} = \frac{n^0 G \tau}{6a \rho_c n^0 (G \tau)^4} = \frac{1}{6a \rho_c (G \tau)^3}$$

If predominate size is used as a design parameter

$$\frac{n_c}{m_c} = \frac{9}{2a\rho_c L_{pr}^3}$$

Nucleation Rate

Nucleation rate = no of crystals / time × volume of mother liquor

$$B^{0} = \frac{Cn_{c}}{m_{c}V_{c}} = \frac{9C}{2a\rho_{c}V_{c}L_{pr}^{3}}$$

Where C = mass production rate of the crystal

Problem

□ A continuous vacuum crystallizer produces 5 tons of MgSO₄.7H₂O per hour. The product is associated with magma. The volume ratio of crystal to magma is 0.15. The densities of crystal and mother liquor are 105 and 82.5 Ib/ft³. Growth rate , G=0.0018 ft/hr is anticipated and a predominant crystal size of 20 mesh is desired.

Calculate

If this unit can be assumed **MSMPR** Crystallizer and the shape factor is assumed to be unity, then **calculate**

 a) Volume of Magma in the crystallizer

b) Nucleation rate B⁰

Calculate

c) The crystallizer has a free space above the magma level equal to 31% of the magma volume in the crystallizer. Length to diameter ratio of the crystallizer is 1.5. Determine its length and diameter

Calculate

Population Density vs. Length

Tyler Standard Screen Scale

Tyler	\mathbf{US}	mm	Inches	
8	8	2.36	0.094	
10	12	1.65	0.065	
12	14	1.40	0.056	
14	16	1.17	0.047	
16	18	0.991	0.039	
20	20	0.833	0.033	
24	25	0.701	0.028	
28	30	0.589	0.023	
32	35	0.495	0.020	
35	40	0.417	0.016	
42	45	0.351	0.014	
48	50	0.295	0.012	

Size Distribution Relations

Screen Analysis of the Product

	Size			Screen analysis, %	
Mesh	ft	mm	z	Cumulative	Differential
8	0.0078	2.37	8.5	97	3
9	0.0065	1.98	7.1	93	4
10	0.0054	1.65	5.9	84	9
12	0.0046	1.40	5.0	74	10
14	0.0038	1.16	4.2	61	13
16	0.0033	1.01	3.6	48	13
20	0.0027	0.82	3.0	35	13
24	0.0023	0.70	2.5	25	10
28	0.0019	0.58	2.1	17	8
32	0.0016	0.49	1.8	11	6
35	0.0014	0.43	1.5	6	5
42	0.0011	0.34	1.2	4	2

Reference

McCabe & Smith: Unit Operations of Chemical Engineering, fifth edition, pages 909-916