Particle Shape

Ammonium Sulfate

Potassium Nitrate

Sodium Carbonate Monohydrate

Potassium Chloride

Sulfamic Acid

Ashfaq M Ansery LecturerChE Department, BUET

Shape Factor

- ■A normal way of expressing the shape factor is to make it
	- \blacksquare the ratio of the particle property to the property of a sphere having a diameter equal to the measured particle dimension

Volume-based Shape Factor

particle volume

volume of a sphere of same diameter

$$
\Psi'_v = \frac{\psi_v D_p^3}{\frac{\pi}{6} D_p^3} = \frac{\psi_v}{\frac{\pi}{6}}
$$

=

Sphericity

□ A surface-volume shape factor

surface area of the particle surface area of a sphere of volume equal to that of the particle =

Sphericity cont…

 P *PA_P D A A* 2 $\rm 0$ $\psi = \frac{A_0}{4} = \frac{\pi D_0}{4}$

p p A V $\binom{p}{2}^{2/3}$ π ($\frac{6}{\pi}$ π =

Where

D

V p

- A_o , A_p = surface area of the equivalent sphere and of the particle respectively
	- $=$ diameter of the equivalent sphere
		- = particle volume

Ratio Of Specific Surface

specific surface of the particle

specific surface of a sphere of the same "diameter"

$$
\eta = \frac{\text{specific surface (cm}^2 / \text{gm})}{6D_p}
$$

\Box "diameter" is usually taken as the mean screen opening

ρ

=

Ratio Of Specific Surface

Advantage

Q The specific surface of a material for which there are no data may be roughly estimated from the ratio of specific surfaces of a similar material

Specific Surface from Ratio

Total Surface =
$$
\frac{6\eta_1 m_1}{\rho(D_p)_1} + \frac{6\eta_2 m_2}{\rho(D_p)_2} + \dots + \frac{6\eta_i m_i}{\rho(D_p)_i} = \frac{6}{\rho} \sum_{i=1}^k \frac{\eta_i m_i}{(D_p)_i}
$$

$$
\text{Average Specific Surface} = \frac{\frac{6}{\rho} \sum_{i=1}^{k} \frac{\eta_i m_i}{(D_p)_i}}{\sum_{i=1}^{k} m_i} = \frac{6}{\rho} \sum_{i=1}^{k} \frac{\eta_i x_i}{(D_p)_i}
$$

Bed Porosity

\square Fraction void volume $\mathsf{E}{=}\mathsf{V}_{\mathsf{V}}\mathsf{/}\mathsf{V}_{\mathsf{T}}$ $=$ 1-V $_{\rm P}/$ V $_{\rm T}$

ρ*AHM P* 1−=

Porosity

\square Porosity of a static bed depends upon

- **Particle shape and surface** roughness
- **Particle size and size distribution**
- Size of the container relative to the particle diameter
- **Method of packing**

Method of Packing

- Water-fill method initially gives more porous packing
- **BUT**

■ Vibration of the vessel and the effect of gas or liquid flow through it ultimately compacts the bed

Particle Shape and Surface Roughness

- \square The lower the particle sphericity, the more open is bed
- □ Particles settle across each other and pack with pointed ends against each other, preventing a close packing

Sphericity as a Function of Porosity

Figure B-12. Sphericity as a function of porosity for random-packed beds of uniformly sized particles (2). (By permission of John Wiley & Sons, copyright © 1950.)

Particle Size and Size Distribution

 \square Presence of fine and coarse particles results in a bed of lower porosity than would be obtained with uniform particles

Particle Size and Vessel Size

- \square The presence of container wall interrupts the pattern of particle-toparticle contacts
- \square Hence makes for a larger fraction voids at the wall

Reference

Foust *et al*: **Principles of Unit Operations**, second edition, John Wiley & Sons, Page#711-714

ASSIGNMENT: Problems B-2, B-3, B-5, B-6, B-7